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The paper describes the development and application of a new Euler
solver for adaptive tetrahedral grids. Spatial discretization uses a finite-
volume, node-based scheme that is of central-differencing type. A
second-order Taylor series expansion is employed to march the solution
in time according to the Lax~-Wendroff approach. Special upwind-like
smoothing operators for unstructured grids are developed for shock-
capturing, as well as for suppression of solution oscillations. The
scheme is formulated so that all operations are edge-based, which
reduces the computational effort significantly. An adaptive grid algo-
rithm is employed in order to resolve local flow features. This is
achieved by dividing the tetrahedral cells locally, guided by a flow
feature detection algorithm. Application cases include transonic flow
around the ONERA M8 wing and transonic flow past a transport aircraft
configuration. Comparisons with experimental data evaluate accuracy
of the developed adaptive solver.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Considerable progress has been made over the past years
on development and application of computational fivid
dynamics methods for fluid flow simulations. However,
computation of flows around three-dimensional bodies
remains a major issue in CFD. Generation of a body-
conforming grid is a difficult task [1].

In the case of strucrured grids, spatial orientation of
the elements allows an (4, /, k) index to be employed for
denoting the grid points. It becomes increasingly difficult to
model the computational grid as the flow geometries
encountered become more complex such as in 3D flow
simulations about an entire aircraft configuration. The mul-
tiblock strategy, introduced by [2], has been used for such
complex peometries. This concept is to break the flow field
into several smaller blocks and then genecrate separate
meshes in each individual block. Grid generation around
configurations like a complete aircraft entails the need for a
large number of such blocks. The probiem of defining the
blocks and their interfaces becomes increasingly difficult as
the number of blocks increases.

In the case of unstructured grids, one can dispense with
the need for the grid points to be in any order. The
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tetrahedron is the simplest element in 3D and therefore it is
the most flexible in covering complex topologies [1, 3-57,
wherein no single natural coordinate direction exists, A
compromise between the two approaches has been the
employment of semi-unstructured prismatic elements [6].
Such grids are employed within the viscous regions of a flow
domain in order to capture the strong directionality of the
viscous stresses, while tetrahedral grids are applied within
the inviscid regions.

The spatial derivative approximations used in these
algorithms can usually be considered as central space
differencing with added dissipation or as flux split upwind
differencing. Central space differencing schemes require the
addition of special dissipation terms in order to capture the
shock waves as well as to suppress the solution oscillations.
Upwind schemes do not require any explicitly added dis-
sipation, but they are usually more expensive and complex
when compared to the central space differencing schemes.
The required computation time per grid cell by a numerical
scheme is an important issue in cases of 3D tetrahedra grid
computations due to the relatively large number of cells that
are required. Furthermore, central-differencing schemes can
adjust the smoothing operators in order to increase the
effectiveness of multigrid accelerators, which is more dif-
ficult to do with the upwinding operators, The issue of the
type of spatial differencing is not settled within the com-
munity and both types of approaches are currently pursued.
In the present work a central differencing scheme is
presented. However, smoothing operators have a special
upwind-like form.

Resolution of the computational mesh plays a crucial role
on the accuracy of computations. However, generation of a
grid which both fits the flow geometry and resolves the local
flow features is quite difficult, and even impossible in some
cases. In general the selection of the grid that is to be used
in a numerical simuiation is determined a priori starting the
solution procedure, and quite often the grid is modified by
the user, in order to improve the results. Adaptive grid
algorithms are flexible enough to adjust the grid during the
solution procedure without intervention by the user.
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Frequently, the regions that require high resolution are very
small compared to the size of the overall computational
domain. Local grid embedding consists of division of the
cells in order to reduce the truncation error and to have a
more equal distribution of it throughout the soiution
domain. Quadrilateral meshes have been employed for
inviscid flows [7, 8], as weli as for turbulent flows [9-111.
Once of the most serious problems with using quadrilateral
meshes has been the presence of grid-interfaces, which
require special numerical treatment [9, 12]. Such treat-
ments can be quite complicated, and especiaily so in three
dimensions. Triangular meshes have also been employed
with grid embedding [13, 14]. An attractive feature of
unstructured grids is the case with which adaptive refine-
ment can be included. The flow solver requires no further
modifications when employing an adapted grid. Up to
the present, very few such algorithms have been
developed [4, 16].

In the present work, a central space differencing, node-
centered Euler scheme for tetrahedral grids is presented. It
is a one-step Lax—Wendrofl-type, conservative scheme. The
scheme is formulated so that all operations are edge-based,
which reduces the computational work significantly. A
significant work that involved central differencing, the
Lax—Wendrofi-type scheme, was by [17], which uses
structured grids with quadrilateral elements, and a similar
scheme was also implemented for three-dimensional meshes
using hexahedral elements [18]. The scheme was also
extended to the 2D Navier-Stokes equations [9, 10]. The
adaptive grids are created by division of the tetrahedral
cells. Isotropic as well as directional division of the ceils
provides considerable flexibility in increasing resolution of
the grid with the minimum possible number of celils.
Application cases include transonic flow around the
ONERA M6 wing and transonic flow around an aircraft
configuration. Comparisons with experimental data
evaluate accuracy of the developed solver.

In the following sections, the spatial as well as the
temporal discretizations are described, followed by a
presentation of the smoothing operators. Effectiveness of
the adaptive algorithm is demonstrated via applications for
which experimental data exist,

2. GOVERNING EQUATIONS

The governing equations to be solved is the system of
time-dependent Euler equations for a perfect gas which
combines the equations of mass, momentum, and energy,

du 5F é6G J¢H

. |
T T T (D

The state vector U and the flux vectors F, G, H are
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expressed in terms of the conservation variables, namely,
density p, x, y, z-momentum and energy as

=(p pu pv pw E) (2)
pu v
pul+p pou
F= puv , G=| pv*+p |,
puw pow
Eu+ pu Ev+ pv 3)
pw
pwi
H= Wy ,
pw?+ p
Ew+ pw

where £ is the total energy, related to the other variables by
an equation of state which, for a perfect gas, is
4

1
E= ?Tl+2p(u + 02+ wh),

3. TEMPORAL DISCRETIZATION

The solution at any particular node, say 0, at time level
n+ 1 can be expressed in terms of the solution at time level n
using a Taylor series expansion,

Untl=Us+6U;

U
U= U"“—Ug—(6 ) At
ot J,

g 8
+ + 047
(a: ) 2 (4r)
The temporal derivatives in the above expression are
evaluated in terms of the spatial derivatives using the
governing equations according to the Lax-Wendroff
approach. The finite-volume method integrates the Euler

equation (1) on the control volume £2, enclosing a particular
node, say 0, which is enveloped by the boundary éQ,.

(4)

0U, 0F 4G oM
f(5t+6x+a a)dgo (5)
which is rewritten using the divergence theorem as
U
j (a )dQ— —[ (Fn,+Gn,+Hn)ds (6)
at a8 :
U
(a ) Q,= —j (Fn,+ Gn,+Hn.) dS (7
ot 20 -
au 1
(E) _—5;[3% (Fn,+Gn,+Hn,)dS, (8)
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where n,, n,, n_ are the components of the unit vector nor-
mal to the area elements 45 of the boundary surface 802,.

The second-order temporal derivative at the node 0 is
evaluated as

21U 0 (0F 3G &H
C Nag=—{ L(EL%. NN o
L%( a:z) Lnaz(ax T T 62) ©)

which, after changing the order of differentiation, is recast
using the divergence theorem as

a*u JF oU
an=- (&4
L-‘o( ar ) ‘|.5f20 (5U dt ) i

3G U dH AU
+(mg)ny+(ﬁ§)nzd8 (10)
2*U 1 . au
(?)0——-é-;LDO(Anx+ﬁny+an)E-dS, (11)
where
OF G oH
=) e(w) o) o

are the Jacobian matrices.

4. SPATIAL DISCRETIZATION

The surface integrals that appear in Egs. (8) and (11) are
to be evaluated on the boundary of the control volume of
each node in the grid. There are different approaches in
defining the control volumes around the nodes.

4

FIG. 1. Dual mesh, shown in dashed lines, for a triangular grid.

251
4.1. Dual Mesh

The spatial terms that appear in Eqs. (8) and {11) are
avaluated by employing special volumes that form the dual
mesh. The dual mesh is formed by constructing non-over-
lapping volumes, referred to as dual cells, around each node.
The dual cells represent the control volume associated with
the respective node. The dual mesh, for a two-dimensional
unstructured grid, is shown with dashed lines in Fig. 1. The
mesh is constructed by connecting the mid-points of the
edges and the centroids of the triangular elements that
constitute the grid and henceforth dividing each triangle
into three quadrilaterals of equal arcas. The finite-volume
around any node, say 0, is constituted by the union of all the
quadrilaterals which share that node.

Analogously, the dual mesh for a tetrahedral gnid is con-
structed by dividing cach tetrahedron into four hexahedra
of equal volumes, by connecting the mid-edge points, face-
centroids, and the centroid of the tetrahedron. Figure 2
shows a tetrahedron 0—1-2-3 with the two hexahedral cells
0-E1-F2-C-F3-E4-F1-E5 and 3-E2-F2-C-F4-E6-F1-
E5 that constitute a portion of the dual cells around the
nodes 0 and 3, respectively. The control volume around a
node 0 is thus constituted by a polyhedral hull which is
the union of all such hexahedra that share that node. The
quadrilateral faces that constitute the dual mesh may not all
be planar,

FIG. 2. Dual mesh, shown in dashed lines, for a tetrahedral grid.
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42, Flux Evaluation Using Edge-Based Operations

The surface integral term in Eq. (8) represents the mass,
momentum, and energy flux across the faces of the control
volume around the node 0. The equation is written in the
discrete form as

1

- Fn,+Gn, +Hn. ) dS
QOL%( ,+Hn,)

1
= - L (FS,+GS, + HS,),, (13)
0 x

where the summation is over all the dual mesh faces that
constitute the boundary of the control volume around the
node 0. The areas S, S, S, are projections of the dual face.

The flux evaluation can be cast into edge-based opera-
tions, Consider an edge i, constituted by the nodes, 0, N(i).
The quadrilateral faces of the dual mesh that are connected
to the edge at its mid-point P are shown in Fig, 3. The num-
ber of such quadrilateral faces connected to an edge depends
on the number of cell neighbors for that edge. As an
illustrative case, the edge in Fig. 3 is shown to have four
quadrilateral faces. The projections of the area A, associated
with the edgei are evaluated in terms of those of the
quadrilateral face areas, a,, 4,, 4,, a,, as

4 4

(Ai)x": Z (aj).\:a (AJ)L= Z (aj)ya (Ar')z= Z (aj):'

i=1 i=1

(14)

The projections are computed such that the area vector
always points outward from the control volume surface
associated with any node. The boundary of the control-

FIG. 3. Dual mesh faces attached to an edge.
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volume arcund the node 0 is constituted by the union of

such areas A, associated with each edgei that share the
node 0. Thus, the summation over the dual mesh faces in
Eq. (13) is equivalent to a summation over the edges of the
grid and the fluxes are evaluated on the dual mesh faces
associated with each edge. This eliminates a significant
amount of computational work as the number of edges is
much less than the number of faces in an unstructured grid.

In order to evaluate the contribution of each edge to the
flux across the control-volume faces of a node 0, the flux
vectors F, G, H on the mid-point P of each edgei are
obtained by taking the average of the flux vectors evaluated
at the nodes 0, N(i} on cither ends of the edge using the
known state variables at these nodes. This strategy has been
shown to be equivalent to a finite-clement Galerkin
approximation which is second-order accurate in space
[19]. Thus, the contribution of the edgei to the fluxes
across the faces of the control volume surrounding the
node 0 is given by

Fp(Af).¥+Gp(Ai}_v+Hp(Ai) (15)

The fluxes are thus evaluated on an edge-wise basis and con-
servation is enforced by producing a positive flux contribu-
tion to one node and an equally opposite contribution to
the other node that constitutes the edge.

Simiiariy, the surface integral in Eq. (11), which is used to
evaluate the second-order temporal derivative by the
Lax—Wendroff approach, can be expressed in the discrete
form as '

1 . au
——j (An,+Bn, + Cn,)—dS
o Yo - ot

L Z (KSX+ES_V+CS:),((6U) ., (16)
k

0K ot

where the summation is over all dual mesh faces that con-
stitute the boundary of the control volume around the
node 0. Similar to the evaluation of the first-order temporal
derivative, the above operations can be cast as a summation
over the edges.

The first-order temporal derivatives evaluated at the
nodes 0, Nii) are averaged to obtain the vale of (6 U/é1) at
the mid-edge point P. The state vectors known at the nodes
are averaged to get the state vector U, at the mid-edge
point P with which the Jacobians A,, B,, €,, are computed,

aF, aG,)
Ay, = —= ., B,.=(—
" (aUm) U=, ! (aUm

0H,
cn=(57) -

]
U=,

oan
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The contribution of the edgei to the evaluation of the
second-order temporal derivative at the node 0 is then given

by
- Ju
B,(4,), +(C,(4,).) (—) .

(A (A} +( (18)

ot

The contribution, (3Uf),. of the convective flux terms to
the total change ¢ Uy at node 0 is obtained by substituting
Egs. (15) and (18) into Eq. (4):

(UL, Q— Z At (F (4,)+G,(4

0,=1

— " AI
_Z_

0 i=1

f)y + Hp(Ai):)

x(A,(4).+B (19)

(A )+C(A))(6U).

r
4.3, Data Structure

The number of nodes in a typical tetrahedral mesh is
approximately five to six times smaller than the number of
cells. As a consequence, a vertex-based scheme appears to
require less storage compared to a cell-centered scheme.
Minimization of the storage requirement is one of the main
issues in the development of the present scheme, which
stores the state-vector values at grid-nodes. From Eq. (19)
it can be seen that all the operations pertaining to the
evaluation of the fluxes and the dissipation terms (as will be
seen in the next section) can be performed in a single loop
through the edges. Hence, an edge-based data structure is a
natural choice for the solver. The data structure is con-
stituted of pointers that give the area projections associated
with every edge as well as the nodes associated with the
edge. As the solver 1s node-centered, the state vectors are
stored at the nodes. These pointers provide all the informa-
tion that is needed to evaluate the expressions in the
relevant equations. The advantages of the edge-based data
structures have also been presented by [ 15, 207.

5. UPWIND-LIKE ARTIFICIAL DISSIPATION

Upwind schemes for solving the hyperbolic equations in
the conservation form rely on the theory of characteristics
and account for the proper wave propagation directions
while differencing the spatial derivatives. These schemes
have shown good capability to capture the shocks without
oscillations. The upwind connection to artificiai dissipation
in central differencing schemes is brought forth in [21],
using a simple one-dimensional analogy. Adding second-
difference dissipation to a second-order accurate central dif-
ferencing scheme is shown to produce a first-order upwind
scheme and adding a fourth-difference dissipation is shown
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to produce a second-order accurate upwind scheme. The
motivation behind the dissipation modelling in the present
work is to formulate it in such a manner as to simulate the
implicit dissipation terms of the upwinding schemes,
without increasing the computation cost of the algorithm.
Considering the one-dimensional Euler equation,

6_U 8_U=0’ A=

ot + 0x

dF
— 20
FTiA (20)
given any two states U, U, the flux difference can be
uniquely expressed as

Fe—FL=Y ade;, (21)
k

where e, are the right eigenvectors of A. The term «, in the
summation represents the strength of each wave and 4,
represents the kth eigenvalue of A (or the speed corre-
sponding to that wave). Using this expression and
accounting for the sign of the eigenvalues, the flux vector at
any intermediate state I between L and R can be expressed
as

FI=%(FL+FR)—§Eak|2k\ek (22)
k
which can be recast into the form
F =1(F +Fg)—-A(Ug-U,), (23)

where A, is Roe’s matrix [22].

The flux vector at the mid-edge point P was taken as the
average of the flux vectors at the two nodes of the edge. This
is equivalent to evaluating F, using the first term in Eq. (23).
Hence, the dissipation terms are modelled so as to be similar
to the second term of the equation, as this corresponds to
the implicit smoothing term of the upwinding scheme. A
simplified form of Eq. (23) is obtained by replacing A with
p(A)=|ul + ¢, the maximum eigenvalue of Roe’s matrix.
This ensures that the dissipation terms do not dwindle down
to zero near the stagnation or the sonic points. The
contribution, (éU}),,, of shock smoothing terms to the
change d U} at the node 0 is given as

At
(5Ug}32_g_ Z (p(A,) S, +p(B,) S, +p(C)8)),
0=
x (UN(i) —Uy), (24)
where p(A,), p(B,), p(C,) are the spectral radii of Roe’s

matrices corresponding to the flux vectors F, G, H
evaluated for the edgei. The eigenvalues are evaluated at
the Roe averaged quantities [23]. The shock smoothing
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term is evaluated similar to the convective fluxes on an
edge-wise basis.

The background -smoothing terms are modelled in a
similar fashion. Instead of the first difference of state vectors
as used in Eq. (24), a difference of the accumulated first
difference over the edges sharing a node is taken. This 1s in
concert with the one-dimensional analogy wherein such
a difference is equivalent to the fourth-difference operator
at the nodes. The contribution, (6U}),,, of background
smoothing terms to the change § U at node 0 is given as

—Ar 7 -
(8UG)ea= 7 t Y (p(A) S .+ (p(B,) S, + (p(C,) S.),
0 =1
*x (8 Ungy —8Uy), 25)
where
5UO=Z(UN<k)‘Uo) (26)

k

is the accumuiated first difference over all the edgesk
sharing the node 0. The background smoothing terms are
evaluated on an edge-wise basis as well.

The total change d U} at the node 0 is given by

oUG=(8U3). 4+ 6,(dPy)(8UG) + a4(1 — APG)SUG),y;
(27)

AP is the pressure switch that is used to turn the shock
smoothing and the background smoothing on at the
appropriate regions. For any node 0, the pressure switch is
computed as

(APO)—ZLl (PN[E)_PO),

= : 28
7 Py + Po) 28)

the summation is over all the edges that share the node 0.
The pressure switch is normalized by the maximum value
over the domain so that 0 < AP < 1. When evaluated as
above, 4P has a value close to zero in the smooth regions
of the flow and it has a value close to unity near the regions
of flow discontinuities that are characterized by 2 pressure
jump. The coefficient o, is an empirical parameter that con-
trols the amount of shock smoothing. The shock smoothing
is turned on in the regions of flow that have a sharp
variation in flow parameters, such as near the shocks, and
is turned off elsewherc. The coefficient ¢, is an empirical
parameter that controls background smoothing. The back-
ground smoothing is turned on in the smooth regions of the
flow and is turned off near the shock regimes using the
pressure switch.
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6. LOCAL TIME STEPPING

The solution at each nede is advanced in time using local
time steps. A CFL stability limitation is applied for the con-
vective terms. The viscous-like smoothing term can have
appreciable magnitude at shock regions, As a consequence,
a stability limitation that combines both the inviscid and the
diffusion limitations is applied. The time-step restriction for
the 1D wave equation is At < '4x/|u| + ¢, while the restric-
tion for the 1D diffusion equation is A < Ax?/v, where in
this case v =g, 4P. The formula for the time-step, 4¢,, for
any node 0 is then given by

Vo
Aty = R 29
¢ wa+Ay+AZ+D (29)
where
Ax=(|u0|+aD)Sx0
A, ={lvol +25) S0
A, =(lwol +ay) 5.4
and
Vo
D=2, 4Py —mM8m, 30
72 OSx0+SyO+SZO ( )

In the above expression u,, vy, W, are the velocity com-
ponents at the node 0, ¢, is the speed of sound, and AP is
the pressure switch. The area terms S,,4, S,,, S, are the
projected areas of the dual volume around the node 0 in the
X, ¥, and z directions, and they are given by

n
|S1|js Sy0=%z |S)’|J"
1 i=1

(1)

where the summation is over all the dual mesh faces that
constitute the boundary of the control volume around the
node 0. A value of the factor @ =0.5 has been employed.

7. BOUNDARY CONDITIONS

Three types of conditions have been applied for the cases
considered in the present work. Those are (i) flow tangency
at wall, (ii) far field, and (ii} symmetry. The flow tangency
condition is imposed by extrapolating the velocity at the
center of a boundary cell to the corresponding boundary
face and then subtracting the component normal to the
solid surface. Density and pressure values are extrapolated
from the cell-center to the boundary face. Characteristic
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boundary conditions are applied at the far-field boundaries.
The characteristic variables that are employed are the
Riemann invariants, the entropy, and the two velocity
components that are tangent to the boundary. Lastly, the
symmetry condition is applied by simply extrapolating the
state-vector from the cell-center to the corresponding
boundary face.

8. ADAPTIVE GRID REFINEMENT

A dynamic grid adaptation algorithm has been previously
developed for 3D unstructured grids. The algorithm is
capable of simultaneously un-refining and refining the
appropriate regions of the flow regime by detecting the local
flow fearures. In the case of inviscid flows, the dominant
flow fearures may be shock waves, expansion waves, or
vortices, The regions of existence of such features are not
known a priori and they have to be detected. A feature
detector senses the flow fearures that are present in different
regions and guides the adaptive algorithm to embed these
regions if the existing grid spacing in such regions is not suf-
ficient for resolving the local fow variations. The detector
visits the regions of the grid that were embedded at earlier
passes of grid adaptation and checks if strong flow features
are still prevailing in these regions. If the features have
moved away from these regions, as is common in unsteady
flow situations, the detector guids the adaptive algorithm to
un-refine the grid locally in those regions of the grid.

8.1. Feature Detection

The feature detector uses velocity differences and velocity
gradients across the edges as the parameters for sensing the
flow features. The threshold values for the parameters are
set based on the distribution of the parameters which is
characterized by the average (S,..) and the standard
deviation (5,4} of the respective paramelers, where S is any
detection parameter [10]. In the present work, velocity
differences and velocity gradients are used as the detection
parameters. The following relations are used to set the
threshold parameters for refinement:

Sref-th = Save +aSsd'

The average and the standard dewviation are defined as

Zn cd]ges ; En edlgu:s S 2

e TN edges TN edges

The value of the parameter « is chosen empirically, a typi-
cal value of the parameter being 0.3. The edges that have a
detection parameter value greater than the threshold value
are flagged to be refined. Following the edge fMagging, cells
that are having four or more of their edges flagged to be
divided are marked for refinement.
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CORNER CHILD CELLS  (nodes 1,567 2588 36810 47810}

INTERIOR CHILD CELLS {nodes 5678 5788 67810 78310}

FIG, 4. Octree division of a tetrahedron.

R.2. Cell Division Strategies

The different strategics usually employed for embedding a
tetrahedron and the methods of cell division employed in
the adaptive algorithm used in the present work are dis-
cussed in detail in [24].

Octree Division. The tetrahedra that are flagged for
refinement are embedded by the octree cell division that
divides the parent cell into eight children, as shown in Fig. 4,
by inserting mid-edge nodes on the parent cell edges. The
four corner chiid cells are similar to the parent cell. The four
interior child cells are formed by dividing the interior
octahedron, constituted by the nodes 5-6-7-8-9-10, by the
shortest diagonal.

After the octree division of a portion of the grid cells, the
resulting grid contains a number of cells that were imtially
not flagged for division but eventually are left with mid-edge
nodes on some or all of their six edges due to refinement in
the neighboring celis. These are termed as the interface cells
as they constitute the border between the divided and the
undivided cells and their mid-edge nodes are termed as
hanging nodes. Numerical schemes usually employ normal
tetrahedral cells with four corner nodes and significant
changes are necessary in order for the schemes to be applied
to such cells with additional hanging nodes. This is not
desired, as then the adaptive algorithm becomes dependent
on the specific numerical scheme that is employed. Hence, a
special method of cell division has been incorporated in the
adaptive algorithm which eliminated such interface cells.
There are different configurations in which these hanging
nodes appear in the interface cells,

Directional Division. In the case in which all the hanging
nodes are appearing on the edges of the same face, the inter-
face cell is directionally divided into four children as shown
in Fig. 5. There are four possible cases of such division



256

FOUR CHILD CELLS (nodes 12,56 13,57 1467 1567

FIG. 5. Directional cell division into four children when all three
hanging nodes are on the same face.

depending on which one of the faces the hanging nodes
appear. If there is a hanging node appearing on only one of
the six edges, the interface cell is henceforth divided into two
children as shown in Fig. 6. Depending on the edge that has
the hanging node, there are six possible cases of such a
diviston.

Centroidal Node Division. I the hanging node configura-
tion is any different from the ones discussed above, the inter-
face cell is treated by introducing a centroidal node and
dividing the cell accordingly, as illustrated in Fig. 7. It
shows a case of a ceil with two hanging nodes, on edges 1-3
and 2-4. A node C is introduced at the centroid of the cell
and connected to the corner nodes as well as to the hanging
nodes, thus forming tetrahedral child cells. This approach is
general enough to handle the different hanging node
configurations that arise.

TWO CHILD CELLS (nodes L2,4,5 13,4,5)

FIG. 6. Directional cell division into two children when there is only
one hanging node.
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CHILDREN CELLS ON FACE 234
- nodes C,3.4.6
- nodes C23.6

FIG. 7. Centroidal node dividsion of an interface cell.

The grid adaptation algorithm did not use spline techni-
ques to better obtain the coordinates of the newly inserted
nodes on the wall boundary surface of the grid. The coor-
dinates were obtained by linear interpolation only.

9. NUMERICAL RESULTS

Two flow cases are employed in order to provide
an assessment of accuracy, robustness, and computer
requirements of the developed Euler solver on adaptive
tetrahedral grids. The first case is transonic inviscid flow
around the ONERA M6 wing. Two different initial grids
have been used to obtain the flow solutions on this
configuration. The second case considers the low-wing
transport (LWT) aircraft. The initial grids used for all the
computations have been generated by an advancing front
grid generation method [25].

All the computations were performed on a CRAY Y-MP.
The code was vectorized to run at a speed of about
100 Mflops. The memory required for the solver was
30 words/node. It should be noted that this memory
requirement is quite small for an unstructured grid Euler
solver. The values of the smoothing coefficients have been
a,=10"? for shock-capturing and ¢,=10""> for back-
ground smoothing.

9.1. ONERA M6 Wing

The ONERA M6 wing is considered for evaluating
accuracy of adaptive flow solutions. This configuration has
been used as a benchmark case for evaluating the accuracy
of several Euler methods. The wing has a leading edge sweep
of 30°, an aspect ratio of 3.8, a taper ratio of 0.56, and sym-
metrical airfoil sections, The wing has a root chord of 0.67
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FIG. 8. Triangulation of the ONERA wing upper sutface (initial fine grid).

and a semi-span of 1.0 with a rounded tip. The computa-
tional domain is bounded by a rectangular box with
boundaries at —6.5<x<11.0, 00< y<25, and —65<
z < 6.5. Inviscid, transonic flow solutions were computed at
M =0.84 and angle of attack « = 3.06°.

Adaptive Solution with an Initial Fine Grid. The
initial mesh employed comprises of 231,507 cells and
42,410 nodes. The triangulation on the wing surface is
shown in Fig.8, The solutions are started from the
freestream conditions being specified everywhere. Figure 9
shows the flow solution after 4600 iterations on the initial
grid. Mach number contour lines on the upper surface of the
wing are shown, plotted using an increment of AM =0.02.
The solution clearly features a A shock that is formed by the
two in-board shocks which merge together to form a single
strong shock in the tip region of the wing. The fore shock is
captured reasonably well, whereas the aft shock appears to
be more diffused. This is due to resolution being less in that
region of the grid. The convergence history for the solution
obtained on the initial grid is shown in Fig. 10.

The initial grid is now adaptively embedded in the regions
of the local flow features. Figures 14 and 15 show the

triangulation on the wing surface and the symmetry planes
with the embedded regions of the grid being denoted with
the darker shades. Velocity differences and the velocity
gradients were used as the detection parameters. The
adapted grid has 833,613 cells and 144,722 nodes. It is seen
that grid embedding is aligned along the A shock. Further-
more, there is more embedding along the aft shock than

FIG. 9. Mach number contour lines on the wing upper surface.
Solution obtained on the initial fine grid after 4600 iterations (4M =0.02).
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FIG. 10. Convergence history for the solution obtained on the initial
fine grid for the ONERA M6 wing.

along the fore shock as the former is more smeared in the
initial solution. There is also an appreciable amount of
embedding in the leading edge region of the wing as the flow
undergoes rapid acceleration from the stagnation point and
reaches the peak Mach number of about 1.50 within 10%
chord at all span-wise locations. There is also some
embedding on the symmetry plane near the leading edge
region and near 75 % chord which shows the presence of the
weak aft shock at the latter location.

The solution obtained on the initial grid is interpolated to
the new grid points and this is used as the starting solution
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FIG. 12. Isometric view of the triangulation on the wing upper surface
and the symmetry plane corresponding to the once adapted fine grid.

for the adapted grid. Figures 16 and 17 show the solution
obtained on the adapted grid. Mach number contour lines
on the upper surface of the wing and on the symmetry plane
are shown, plotted using an increment of AM =0.02. Tt is
seen from the figures that both the fore and the aft shocks
have sharpened to an appreciable extent compared to the
corresponding solution plots on the initial grid (Fig. 9). [tis
also observed that the aft shock on the symmetry plane is
much sharper.
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FIG. 13. Mach number contour lines on the wing upper surface.
Solution obtained on the once adapted fine grid (4M =0.02).
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FIG. 15. Pressure coeflicients comparison on the wing surface at i = 0.44 spanwise location: », Experimental values (upper surface); =, experimental

values {lower surface); , ong level adapted grid.

F1G. 16. Pressure coefficients comparison on the wing surface at
=065 spanwise location: «+, experimental values (upper surface};
o, experimental values (lower surface); , one level adapted grid.

three spanwise locations. The values corresponding to the
initial coarse grid calculation are shown in the short dashed
lines in the figures, It is seen that the computed values are
quite different from the experimental data at all spanwise
locations and that there is no indication of a clear aft shock.
The grid is now adapted using the same detection
parameters as before. The once-adapted grid has 37,123
nodes and 206,577 cells. Figure 23 shows that the first level
embedding (light shaded areas) covers a predominant por-
tion of the wing surface. The solution obtained on the once-
adapted grid is shown in Fig 24. Comparing Figs. 19
and 24, it is observed that the fore shock is lot sharper and
is very well captured. The aft shock is now captured well up
to about = 15%, as the first level embedding extends only
up to that region, beyond which the shock diffuses out. This
can be attributed to the coarseness of the grid near the sym-
metry plane. Compatison of the pressure coefficients in
Figs. 20 to 22 (long dashed lines} shows that there is a
marked improvement in the results which now match the
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FIG. 17, Pressure coefficients comparison on the wing surface at # = .90 spanwise location: «, experimental values (upper surface); o, experimental

values (lower surface); , one level adapted grid.

experimental values quite closely at all spanwise locations of
the wing. To improve the solution further, the grid is
adapted again and the resulting second-level embedded
grid on the wing surface is shown in Fig. 23 (darker shaded
areas). The twice-adapted grid has 144,548 nodes and
833,701 cells. The second level covers the fore shock, the aft
shock, as well as the leading edge region. It is observed that
relatively large cells are next to much smaller ones, which
makes this case a severe test for accuracy and robustness of
the developed Euler solver. Mach number ling contours in
Fig. 25 show that the fore shock is very sharply captured.
Comparing the pressure coefficient values on the wing
surface (solid lines) in Figs. 20 to 22, it is seen that the fore
shock is much sharper than the result obtained on the once-
adapted fine grid. The aft shock is also considerably sharper
than the result obtained on the once-adapted coarse grid,
but little improvement is attained in the region beyond
n =0.15, as there is no embedding there.

9.2. Low-Wing Transport Aircraft

Coemputations were carried out for a low wing transport
{LWT) configuration described in [27]. Inviscid, transonic
flow of M =0.768 was considered with an angle of attack
x=1.116°. A semispan computational grid was generated
for the LWT aircraft geometry without the nacelles. View of
the triangulation on the wing upper surface and the fuselage
is shown in Fig. 26. The initial grid is comprised of 48,828
nodes and 266,400 cells. The experimental pressure
measurements were obtained with Reynolds number of
2.5x 10° based on the mean aerodynamic chord of the
wing [29].

Computed solutions obtained on the initial grid are
shown in Fig. 27. Mach number contour lines are plotted at
intervals of 4M =0.02. A single shock wave is formed on the
upper surface. Comparison of the pressure coefficients at
three spanwise locations, namely n=0.20, # =0.40, and
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"

o, experimental values (lower surface); -——, initial grid solution; ———
one level adapted grid;

FIG, 21. Pressure coefficients compatison on the wing surface at
n =090 span-wis¢ location; +, experimental valyes (upper surface};

=065 span-wise location: «, experimental values (upper surface);
o, experimental values (lower surface); -——, initial grid solution; ———,

bl

, two level adapted grid.

one level adapted grid;

, two level adapted grid.

FIG. 23. Triangulation on the wing upper surface corresponding to the twice adapted coarse grid. Light shaded area denotes the first level and the

dark shaded area denotes the second level,
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FEG. 24. Mach number contour lines on the wing upper surface FIG. 25. Mach number contour lines on the wing upper surface.
Solution obtained on the once adapted coarse grid (AM = 0.02). Solution obtained on the twice adapted coarse grid (4M = 0.02).

e ANy e a gy A g p e L,
B AT A W W g SRR Y
~;:am¢‘v.a¢.ﬂwg“

b

A A A A AT W
4 NSNS

AT i NN SO e AV A P S AVaY)

B R E e Sy
KARANAAKOSRERERR

e et P U

A\ L VA RN\ S

FIG. 27. Mach number contour lines on the wing upper surface. Solution obtained on the initial grid (4M =0.02}.
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the results agree quite well in the fore regions of the wing,
but agreement is somewhat poor in the aft regions. This has
been observed by other inviscid flow computations as
well [30]. The viscous effects change the flow pattern to a
considerable extent in this case. Viscous effects have been
observed to be very significant in the aft portion of the wing
due to flow separation. The grid was embedded using the
velocity gradients and velocity differences as the parameters.
The embedded grid, on the aircraft surface as well as on the
symmetry plane, is shown in Figs. 31 and 32. The adapted
grid has 185,230 nodes. The Mach number contour lines are
shown in Fig. 33, plotted at intervals of AAM =0.02. The plot
shows that there is a considerable improvement in the
solution as compared to the one obtained on the initial grid.
The shock appears distinctly sharper on the adapted grid
solution. Comparison of the pressure coefficients, obtained
using the adapted grid solution, on the wing surface with the
experimental values is shown in solid lines in Figs. 28 to 30.
The figures show that the sclution on the adapted grid
captures the section peak in the fore region of the wing
better than the initial grid solution.

10. CONCLUDING REMARKS

A new Euler scheme for adaptive tetrahedral grids has
been developed and applied. Accuracy of the method has
been tested through comparisons with experimental data.



266 VIJAYAN AND KALLINDERIS

R A v
NAAVAN o it
VAV e
AR

[

ol

]
>

Il
>
<
W
XA
5
P

FIG. 31. Triangulation on the wing and body surface corresponding to the once adapted grid.
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FIG. 32. Isometric view of the triangulation on the wing, body, and symmetry plane surface corresponding to the once adapted grid.






